Biological Modeling of Neural Networks:

10.1 Cortical Populations
- columns and receptive fields

10.2 Connectivity
- cortical connectivity
- model connectivity schemes

10.3 Mean-field argument
- asynchronous state

10.4 Random Networks
- Balanced state

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Biological Modeling of Neural Networks – Review from week 1

- 10,000 neurons
- 3 km wire
- Motor cortex
- Frontal cortex
- To motor output
population of neurons with similar properties

Brain

stim

neuron 1

neuron 2

Neuron K
population activity - rate defined by population average

\[A(t) = \frac{n(t; t + \Delta t)}{N\Delta t} \]
Week 10-part 1: Population activity

population of neurons with similar properties
Week 10-part 1: Population activity

population of neurons with similar properties

population activity

A(t)

Are there such populations?

Brain
Week 10-part 1: Scales of neuronal processes

Population of neurons with similar properties
Week 10 – part 1b: Cortical Populations – columns and receptive fields

Biological Modeling of Neural Networks:

Week 10 – Neuronal Populations

Wulfram Gerstner
EPFL, Lausanne, Switzerland

10.1 Cortical Populations
- columns and receptive fields

10.2 Connectivity
- cortical connectivity
- model connectivity schemes

10.3 Mean-field argument
- asynchronous state

10.4 Random networks
Week 10-part 1b: Receptive fields

[Diagram of brain with labeled visual cortex and electrode]
Week 10-part 1b: Receptive fields
Neighboring cells in visual cortex have similar preferred center of receptive field.
Week 10-part 1b: Orientation tuning of receptive fields

Receptive fields:
Retina, LGN

Receptive fields:
visual cortex V1

Orientation selective
Week 10-part 1b: Orientation tuning of receptive fields

Receptive fields:
visual cortex V1

Orientation selective
Week 10-part 1b: Orientation tuning of receptive fields

Receptive fields: visual cortex V1

Orientation selective

Stimulus orientation

rate

preferred orientation

Week 10-part 1b: Orientation tuning of receptive fields

Receptive fields: visual cortex V1

Orientation selective

Stimulus orientation

rate

preferred orientation
Receptive fields: visual cortex V1

Neighboring neurons have similar properties

Orientation selective

Week 10-part 1b: Orientation columns/orientation maps
Neighboring cells in visual cortex
Have similar preferred orientation:

cortical orientation map
Week 10-part 1b: Orientation columns/orientation maps

Population of neighboring neurons: different orientations

Week 10-part 1b: Interaction between populations / columns

\(I(t) \)

\(A_n(t) \)
Week 10-part 1b: Do populations / columns really exist?
Week 10-part 1b: Do populations / columns really exist?

Course coding

Many cells (from different columns) respond to a single stimulus with different rate.
The receptive field of a visual neuron refers to
[] The localized region of space to which it is sensitive
[] The orientation of a light bar to which it is sensitive
[] The set of all stimulus features to which it is sensitive

The receptive field of an auditory neuron refers to
[] The set of all stimulus features to which it is sensitive
[] The range of frequencies to which it is sensitive

The receptive field of a somatosensory neuron refers to
[] The set of all stimulus features to which it is sensitive
[] The region of body surface to which it is sensitive
Biological Modeling of Neural Networks:

Week 10 – part 2: Connectivity

10.1 Cortical Populations
- columns and receptive fields

10.2 Connectivity
- cortical connectivity
- model connectivity schemes

10.3 Mean-field argument
- asynchronous state

10.4 Balanced state

Wulfram Gerstner
EPFL, Lausanne, Switzerland
Week 10-part 2: Connectivity schemes (models)

1 population = What?
Week 10-part 2: model population

population = group of neurons
with
- similar neuronal properties
- similar input
- similar receptive field
- similar connectivity

make this more precise
Week 10-part 2: local cortical connectivity across layers

Here:
Excitatory neurons

1 population = all neurons of given type in one layer of same column (e.g. excitatory in layer 3)

Lefort et al. NEURON, 2009
Week 10-part 2: Connectivity schemes (models)

- Full connectivity
- Random: prob p fixed
- Random: number K of inputs fixed

random: probability $p=0.1$, fixed

Fig. 12.7: Simulation of a model network with a fixed connection probability $p = 0.1$. A. Top: Population activity $A(t)$ averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory neurons. Bottom: Total input current $I_i(t)$ into two randomly chosen neurons.
Can we mathematically predict the population activity?

given
- connection probability p
- properties of individual neurons
- large population

asynchronous activity
Biological Modeling of Neural Networks:

Week 10 – Neuronal Populations

Wulfram Gerstner
EPFL, Lausanne, Switzerland

10.1 Cortical Populations
- columns and receptive fields

10.2 Connectivity
- cortical connectivity
- model connectivity schemes

10.3 Mean-field argument
- asynchronous state

10.4 Balanced state
Population
- 50 000 neurons
- 20 percent inhibitory
- randomly connected

Random firing in a populations of neurons

Neuron # 32374
50

A [Hz]

Neuron #
32440
32340
100

time [ms]

u [mV]
0

input \{ low rate, high rate \}
Week 10-part 3: asynchronous firing

Blackboard:
- Definition of $A(t)$
- filtered $A(t)$
- $\langle A(t) \rangle$

Asynchronous state
$\langle A(t) \rangle = A_0 = \text{constant}$

Week 10-part 3: counter-example: $A(t)$ not constant

population of neurons with similar properties

Systematic oscillation \rightarrow not ‘asynchronous’
Populations of spiking neurons

population activity?

Homogeneous network:
- each neuron receives input from k neurons in network
- each neuron receives the same (mean) external input

$A(t) = \frac{n(t; t + \Delta t)}{N\Delta t}$
Week 10-part 3: mean-field arguments

Blackboard: Input to neuron i
Full connectivity
Week 10-part 3: mean-field arguments

Fully connected network

\[w_{ij} = w_0 \]

Synaptic coupling

\[I(t) = I^{ext}(t) + I^{net}(t) \]

\[I^{net}(t) = \sum_j \sum_f w_{ij} \alpha(t - t^f_j) \]

All spikes, all neurons
Week 10-part 3: mean-field arguments

All neurons receive the same total input current (‘mean field’)

\[I_i(t) = J_0 \int \alpha(s) A(t-s) ds + I_{ext}(t) \]

Index \(i \) disappears

\[w_{ij} = \frac{J_0}{N} \]

All spikes, all neurons

\[I^{net}(t) = \sum_j \sum_f w_{ij} \alpha(t-t_j^f) + I_{ext} \]
Week 10 - part 3: stationary state/asynchronous activity

\[I_0 = [J_0 q A_0 + I_0^{ext}] \]

Homogeneous network
All neurons are identical, Single neuron rate = population rate \[\nu = g(I_0) = A_0 \]

blackboard

frequency (single neuron) \[\nu = \frac{1}{s} \int_0^\infty s P_I \hat{t} + s | \hat{t} \, ds \] = \(g(h_0) \)
Stationary solution

\[\nu = g(I_0) \]
\[\nu = A_0 \]

\[I_0 = \left[J_0 \eta A_0 + I_0^{\text{ext}} \right] \]

Homogeneous network, stationary,
All neurons are identical,
Single neuron rate = population rate

\[\nu = g(I_0) = A_0 \]
Exercise 1: homogeneous stationary solution

Homogeneous network
All neurons are identical,
Single neuron rate = population rate

\[v = g(h_0) \]

fully connected

N \gg 1

Next lecture: 11h15
Single Population
- population activity, definition
- full connectivity
- stationary state/asynchronous state

Single neuron rate = population rate

\[\nu = g(I_0) = A_0 \]

What is this function \(g \)?

Examples:
- leaky integrate-and-fire with diffusive noise
- Spike Response Model with escape noise
- Hodgkin-Huxley model (see week 2)
Week 10-part 3: mean-field, leaky integrate-and-fire

\[I_0 = J_0 q A_0 + I_0^{\text{ext}} \]

\[[I_0 - I_0^{\text{ext}}] / J_0 q = A_0 \]

\[\nu = g_\sigma(I_0) \]

Different noise levels

Function \(g \) can be calculated
Review: Spike Response Model with Escape Noise

Spike reception: EPSP

\[\varepsilon(t - t^f_j) = \exp\left[-\frac{t - t^f_j}{\tau}\right] \]

Spike emission: AP

\[\eta(t - \hat{\tau}) \]

Last spike of i

\[u_i(t) = \eta(t - \hat{\tau}_i) + \sum_{j} \sum_{f} w_{ij} \varepsilon(t - t^f_j) \]

All spikes, all neurons

Firing intensity

\[\rho(t \mid u) = f(u - \mathcal{G}) \]
Review: Spike Response Model with Escape Noise

Spike emission: AP

Response to current pulse

\[u_i(t | \hat{t}_i) = \eta(t - \hat{t}_i) + \int \kappa(s) I(t - s) ds \]

Blackboard - Renewal model - Interval distrib.

\[\rho(t) = f(h(t)) = \rho_0 \exp\left(\frac{h(t) - \theta}{\Delta}\right) \]
Week 10-part 3: Example - Asynchronous state in SRM₀

\[h₀ = RI₀ = R \left[J₀q A₀ + I₀^{ext} \right] \]

Homogeneous network
All neurons are identical,
Single neuron rate = population rate

\[\nu = g(I₀) = A₀ \]

frequency (single neuron)

\[\nu = \langle s \rangle^{-1} = \left[\int_0^∞ s P_t \, \hat{t} + s | \hat{t} \, ds \right]^{-1} = g(I₀) \]
Week 10-part 3: Example - Asynchronous state in SRM₀

\[u(t \mid \hat{t}) = \eta(t - \hat{t}) + h₀ \]

\[h₀ = RI₀ = R \left[J₀qA₀ + I₀^{ext} \right] \]

\[A₀ = \frac{1}{J₀qR} \left[h₀ - RI₀^{ext} \right] \]

\[A(t) = \text{const} \]

\[\int \alpha(s) ds = q \]

Typical mean field (Curie Weiss)

Homogeneous network
All neurons are identical,

Frequency (single neuron)

\[\nu = \langle s \rangle^{-1} = \left[\int₀^{\infty} s Pₜ \hat{t} + s \mid \hat{t} ds \right]^{-1} = \tilde{g}(h₀) \]
10.1 Cortical Populations
- columns and receptive fields

10.2 Connectivity
- cortical connectivity
- model connectivity schemes

10.3 Mean-field argument
- asynchronous state

10.4 Random networks
- balanced state
Week 10-part 4: mean-field arguments – random connectivity

random connectivity

- full connectivity
- random: prob p fixed
- random: number K of inputs fixed
Week 10-part 4: mean-field arguments – random connectivity

I&F with diffusive noise (stochastic spike arrival)

For any arbitrary neuron in the population

$$\tau \frac{d}{dt} I_i = -I_i + \sum_{k,f} w_{ik} q_e \delta(t - t_k^f) - \sum_{k',f'} w_{ik'} q_i \delta(t - t_{k'}^{f'})$$

Blackboard: excit. – inhib.

EPSC

IPSC

excitatory input spikes
Exercises

2. Fully connected network. Assume a fully connected network of N Poisson neurons with firing rate $\nu(t) = g(I(t)) > 0$. Each neuron sends its output spikes to all other neurons as well as back to itself. When a spike arrives at the synapse from a presynaptic neuron j to a postsynaptic neuron i is, it generates a postsynaptic current

$$I^{\text{syn}}_i = w_{ij} \exp[-(t - t^{(f)}_j)/\tau_s] \quad \text{for} \quad t > t^{(f)}_j,$$

where $t^{(f)}_j$ is the moment when the presynaptic neuron j fired a spike and τ_s is the synaptic time constant.

 a) Assume that each neuron in the network fires at the same rate ν. Calculate the mean and the variance of the input current to neuron i.

 Hint: Use the methods of Chapter 8

 b) Assume that all weights of equal weight $w_{ij} = J_0/N$. Show that the mean input to neuron i is independent of N and that the variance decreases with N.

 c) Evaluate mean and variance and the assumption that the neuron receives 4,000 inputs at a rate of 5Hz. The synaptic time constant is 5ms and $J_0 = 1\mu A$.

2. Stochastically connected network. Consider a network analogous to that discussed in the previous exercise, but with a synaptic coupling current

$$I^{\text{syn}}_i = w_{ij} \left\{ \left(\frac{1}{\tau_1} \right) \exp[-(t - t^{(f)}_j)/\tau_1] - \left(\frac{1}{\tau_2} \right) \exp[-(t - t^{(f)}_j)/\tau_2] \right\} \quad \text{for} \quad t > t^{(f)}_j,$$

which contains both an excitatory and an inhibitory component.

 a) Calculate the mean synaptic current and its variance assuming arbitrary coupling weights w_{ij}. How do mean and variance depend upon the number of neurons N?

 b) Assume that the weights have a value J_0/\sqrt{N}. How do the mean and variance of the synaptic input current scale as a function of N?
Week 10-part 4: Random Connectivity: fixed p

random: probability $p=0.1$, fixed

$w_{ik} \sim \frac{J}{pN}$

Fig. 12.7: Simulation of a model network with a fixed connection probability $p = 0.1$. A. Top: Population activity $A(t)$ averaged over all neurons in a network of 4,000 excitatory and 1,000 inhibitory neurons. Bottom: Total input current $I_i(t)$ into two randomly chosen fluctuations of A decrease

fluctuations of I decrease

Week 10-part 4: Random connectivity – fixed number of inputs

random: number of inputs $K=500$, fixed $W_{ik} \sim \frac{J}{K}$

Network $N=5\,000$

Fig. 12.8: Simulation of a model network with a fixed number of presynaptic partners (400 excitatory and 100 inhibitory cells) for each postsynaptic neuron. **A.** Top: Population activity $A(t)$ averaged over all neurons in a network of 4,000 excitatory and 1,000 inhibitory neurons with $K=500$. **B.** Bottom: Close-up of input fluctuations $I(t)$ for the same network. Fluctuations of A decrease, but fluctuations of I remain constant.
Week 10-part 4: Connectivity schemes – fixed p, but balanced

\[\tau \frac{d}{dt} u_i = -u_i + R(\sum_{k,f} w_{ik} q_e \delta(t - t_{k,k}^f) - \sum_{k',f'} w_{ik} q_i \delta(t - t_{k',f'}^{'f})) + I_{\text{ext}} \]

- Make network bigger, but
- Keep mean input close to zero
 \[p N_e J_e = -p N_i J_i \]
- Keep variance of input

\[
\begin{align*}
 w_{ik} &\sim \frac{J_e}{\sqrt{pN_e}} & J_e &= \text{'random'} \\
 w_{ik} &\sim \frac{J_i}{\sqrt{pN_i}} & J_i &= \text{'random'}
\end{align*}
\]
Week 10-part 4: Connectivity schemes - balanced

Fig. 12.9: Simulation of a model network with balanced excitation and inhibition and fixed connectivity $p = 0.1$. A. Top: Population activity $A(t)$ averaged over all neurons in a network of 4 000 excitatory and 1 000 inhibitory neurons. Bottom: Total input current $I_i(t)$ into two randomly chosen neurons. B. Same as A, but for a network with 8 000 excitatory and 2 000 inhibitory neurons. The synaptic weights have been rescaled by a factor $1/\sqrt{2}$ and the common constant input has been adjusted. All neurons are leaky integrate-and-fire units with identical parameters coupled interacting by short current pulses.

fluctuations of A decrease
fluctuations of I decrease, but ‘smooth’
Week 10-part 4: leaky integrate-and-fire, balanced random network

Network with balanced excitation-inhibition
- 10 000 neurons
- 20 percent inhibitory
- randomly connected

Fig. 12.18: Pairwise correlation of neurons in the Vogels-Ambott network.
A. Excess
Fig. 12.19: Interspike interval distributions in the Vogels-Abbott network. **A.** Interspike interval distribution of a randomly chosen neuron. Note the long tail of the distribution. The width of the distribution can be characterized by a coefficient of variation of $CV = 1.9$. **B.** Distribution of the CV index across all 10 000 neurons of the network. Bin width of
Week 10 – Introduction to Neuronal Populations

10.1 Cortical Populations
- columns and receptive fields

10.2 Connectivity
- cortical connectivity
- model connectivity schemes

10.3 Mean-field argument
- asynchronous state

10.4 Random Networks
- Balanced state

The END

Course evaluations