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Abstract As large-scale, detailed network modeling
projects are flourishing in the field of computational neu-
roscience, it is more and more important to design single
neuron models that not only capture qualitative features of
real neurons but are quantitatively accurate in silico repre-
sentations of those. Recent years have seen substantial effort
being put in the development of algorithms for the systematic
evaluation and optimization of neuron models with respect
to electrophysiological data. It is however difficult to com-
pare these methods because of the lack of appropriate bench-
mark tests. Here, we describe one such effort of providing
the community with a standardized set of tests to quantify
the performances of single neuron models. Our effort takes
the form of a yearly challenge similar to the ones which have
been present in the machine learning community for some
time. This paper gives an account of the first two challenges
which took place in 2007 and 2008 and discusses future
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directions. The results of the competition suggest that best
performance on data obtained from single or double electrode
current or conductance injection is achieved by models that
combine features of standard leaky integrate-and-fire models
with a second variable reflecting adaptation, refractoriness,
or a dynamic threshold.
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1 Introduction

Recent years have witnessed several important large scale
detailed network modeling projects being initiated in
computational neuroscience (Markram 2006; Izhikevich and
Edelman 2008). For these and other projects it is critical to
design single neuron models that can quantitatively capture
the activity of real neurons.

Single neuron models can be classified into two major
categories: detailed biophysical models and simple pheno-
menological models. Following the work of (Hodgkin and
Huxley 1952), a lot of effort has been spent to construct and
study biophysically realistic, detailed models of single neu-
ron electrical activity. These models can successfully repro-
duce a large variety of neuronal behaviors as observed in
experiments by an appropriate combination of different ion
currents (Bower and Beeman 1995). The development of
algorithms for automatic fitting of such models to data in
order to obtain models with quantitatively predictive power
is an active area of research (Prinz et al. 2003, 2004; Achard
and De Schutter 2006; Huys et al. 2006; Druckmann et al.
2007; Keren et al. 2005; Bush et al. 2005; Gerken et al. 2006;
Vanier and Bower 1999; Weaver and Wearne 2006).
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In contrast to detailed Hodgkin–Huxley-type models, very
simple models have only a small number of parameters which
can be automatically and easily extracted from electrophysio-
logical recordings. In the 1970s and 1980s, researchers star-
ted to develop methods for the extraction of simple
neuron models from neural data. Brillinger and Segundo, in
particular, used maximum-likelihood and optimal filtering
techniques to evaluate the linear response curve and firing
probability of neuronal membranes, laying down the foun-
dations for more contemporary approaches (Brillinger and
Segundo 1979; Brillinger 1988a,b). Recently, several groups
have started to build models with true quantitative predictive
power. Rauch, La Camera, and colleagues have demonstra-
ted that the output frequency of cortical pyramidal neurons
and interneurons recorded in vitro can be fitted by Integrate-
and-Fire neurons (La Camera et al. 2004; Rauch et al. 2003).
Keat and colleagues have shown that the precise spike timing
of neurons recorded extracellularly in the visual pathway can
be predicted almost exactly with a very simple model neu-
ron (Keat et al. 2001). Similar results have been obtained for
retinal ganglion cells by Pillow et al. (2005). Carandini and
colleagues have shown that spike trains of a neuron in the
mammalian brain can be predicted on the basis of the spike
train of its main afferent (Carandini et al. 2007). Several tech-
niques have been successfully applied to predict the mem-
brane voltage and spike timing of cortical pyramidal neurons
recorded intracellularly in vitro (Clopath et al. 2007; Jolivet
et al. 2006b; Paninski et al. 2005; Badel et al. 2008) and
in vivo (Lansky et al. 2006). Finally, several methods have
been proposed that still await testing on experimental data
(Jolivet and Gerstner 2004; Kobayashi and Shinomoto 2007;
Mullowney and Iyengar 2008).

Simple models can qualitatively reproduce a broad
range of observed neuronal behaviors (Izhikevich 2004).
Their simplicity permits one to mathematically analyze que-
stions of neural coding (Hopfield 1995; Gerstner et al. 1996;
Kempter et al. 1998; Gerstner and Kistler 2002; Arcas and
Fairhall 2003; Brunel et al. 2003; Keat et al. 2001; Pillow
et al. 2005; Leibold et al. 2008) and implementation in
neural prostheses where such models can be simulated at
low cost or built in silico (Song et al. 2007; Marmarelis and
Berger 2005).

Despite this intense activity, the community still lacks
benchmark tests that can be used as a reference to com-
pare cost and performance of different methods. Here, we
describe one such effort of providing the community with
a standardized set of tests to quantify the performance of
single neuron models. Our effort takes the form of a yearly
challenge similar to those in the machine learning commu-
nity. This paper gives an account of the first two challenges
which took place in 2007 and 2008 and discusses future
directions.

2 The quantitative single-neuron modeling competition

The quantitative single-neuron modeling competition is
divided into four individual challenges, each one addressing
different aspects of neuronal modeling. Challenges A and
B are focused on single-compartment models while chal-
lenges C and D are focused on multicompartmental models.
The goal, dataset and associated evaluation criteria are brie-
fly described below for each of the four challenges. The
data of challenge C and D were identical in 2007 and 2008.
Challenge A and B were modified and replaced with data
exclusively recorded for the challenge in 2008. Datasets and
evaluation criteria are subject to minor changes in subsequent
competitions in order to improve the benchmarking. Please
visit the competition’s website for further details about the
present competition.1

2.1 Challenge A: predicting the timing of somatic
action potentials (2007)

Challenge A proposes to develop a quantitative neuron model
with the goal of predicting the timing of output spikes with
±2 ms precision. We chose this precision level because it is
of the same order than synaptic rise times that can be mea-
sured in the soma of cortical pyramidal neurons. Data were
obtained from a cortical pyramidal neuron in slices of rat bar-
rel cortex [data courtesy of Alexander Rauch and colleagues,
see (Rauch et al. 2003; Jolivet et al. 2006b) for details of the
experimental procedures]. Stimulus currents were injected
and voltage responses were measured via whole-cell patch-
clamp recording at the soma. Randomly fluctuating currents
with different mean and variance were used as stimulus wave-
forms, and each stimulation was repeated four times in order
to evaluate the intrinsic reliability of the cell in terms of the
timing of output spikes (Fig. 1). The fluctuating currents were
generated offline once. The same random sequence was then
injected at each repetition.

Data are divided into two sets. One set, the so-called trai-
ning set, is made available to the public and contains both
the injected current and the voltage recorded in all four trial
repetitions. In the second set, the so-called test set, only the
driving current is made available to the public. Contestants
simulate their quantitative model with these currents as input
and submit their predicted output spike times that are then
independently evaluated by the organizers.

Evaluation criterion. The aim is to predict spike times with a
precision of ∆ = ±2 ms. To evaluate the quality, we calculate
the number of coincidences Ncoinc between the spikes in the
data spike train (target) and the spike train of the tested model.

1 http://lcn.epfl.ch/QuantNeuronMod/.

123

http://lcn.epfl.ch/QuantNeuronMod/


Biol Cybern (2008) 99:417–426 419

(a) (b)

Fig. 1 Challenge A 2007. a A cortical pyramidal neuron was
stimulated by injection of randomly fluctuating currents of various
amplitudes. Current was injected and voltage responses were recorded
at the soma. The goal of the challenge is to predict the timing of somatic
action potentials with ±2 ms precision, given the injected current as a
function of time. b A sample of injected current (top) and waveforms
in order to evaluate the intrinsic reliability of the cell in terms of the
timing of output spikes Jolivet et al. (2006b)

We subtract the expected number of coincidences 〈Ncoinc〉
that a spike train generated by a Poisson process with rate
ν = Ndata/T (where T is the duration of the experiment)
would give and we divide by the number of spikes in the two
spike trains. Here,

Γ = α
Ncoinc − 〈Ncoinc〉

1
2 (Ndata + Nmodel)

(1)

where Ndata and Nmodel denote the number of spikes in the
data and model spike trains and α = 1/[1 − 2 ν∆] is a factor
that normalizes the coincidence factor Γ to a maximum of
1. Γ = 0 implies that the prediction is not better than chance
level.Γ =1 implies that the prediction by the model is optimal.

The overall aim is to maximize Γ averaged across all test
sets and normalize by the intrinsic reliability of the cell for
each particular dataset. For each input, four responses of the
neuron are available (the same input was repeated four times).
We calculate Γ (k) for all n combinations of model response
and neuron response 1 ≤ k ≤ n as well as the intrinsic
reliability Γint and return

ΓA = 1

n

∑

k

Γ (k)

Γint
(2)

Here Γint is the factor Γ as in Eq. (1) but calculated between
two experimental spike trains obtained from two repetitions
of the same stimulus, rather than between one model spike
train and one experimental spike train. Note that several other
measures exist that go beyond firing rates and consider pre-
cise firing times. Some measures are based on binning of the
spike trains (Geisler et al. 1991; MacLeod et al. 1998) or on

cost functions (Aronov and Victor 2004; van Rossum 2001;
Victor and Purpura 1996, 1997). The present measure was
originally proposed by Kistler et al. (1997) and used in seve-
ral previous studies (Clopath et al. 2007; Jolivet et al. 2004,
2006b; Jolivet and Gerstner 2004). See (Jolivet et al. 2008)
for further details.

2.2 Challenge A: predicting the timing of somatic
action potentials (2008)

In 2008, this dataset was replaced by data from cortical neu-
rons under random conductance injection, which moved the
input paradigm closer to the in-vivo situation. Conductance
was injected via dynamic current clamping with two somatic
electrodes, one electrode delivering the voltage-dependent
current and the other one serving as a voltage follower. Exci-
tatory (gexc) and inhibitory (ginh) noisy conductances are
simultaneously injected with correlation times of τexc and
τinh, respectively. The injected net current is therefore

I (t) = gexc(t)[V (t) − Eexc] + ginh(t)[V (t) − Einh] (3)

with reversal potentials of Eexc = −10 mV and Einh =
−70 mV and where gk(t) (k = exc or k = inh) is obtai-
ned from

τk
dgk

dt
= −[gk − µk] + ak ξ(t) (4)

where τk is the correlation time (τexc = 2 ms and τinh =
10 ms, µk is the mean conductance, and ξ(t) is white noise.
The mean values of excitatory and inhibitory conductances
are always µ(gex) = 12 nS and µ(ginh) = 5 nS, but the stan-
dard deviations of the excitatory and inhibitory signals are
different for each stimulus (Fig. 2). The training set consists
of six different stimuli, and three different stimuli serve as test

I(t) =
gexc(t) (V(t)-Eexc) +
ginh(t) (V(t)-Einh)

V(t)
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Fig. 2 Challenge A 2008. a A layer 5 cortical pyramidal neuron was
injected with randomly fluctuating excitatory and inhibitory conduc-
tances. Current was injected via one electrode as a function of the ins-
tantaneously measured voltage at another electrode. Once again, the
goal was to predict the timing of outgoing spikes with a ±2 ms preci-
sion knowing the injected conductances. b Combinations of standard
deviations of excitatory and inhibitory conductances that have been
injected
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Fig. 3 Challenge B 2007.
a Two cortical neurons, a
pyramidal cell and a bitufted
cell (not shown), were injected
with various types of ramp and
step currents. Voltage was
recorded at the soma. The goal
of the challenge is to predict the
subthreshold voltage trace, the
timing of the first spike, as well
as the firing frequency at the
beginning and at the end of a
two-second step current (see
text for further details). b Four
samples of injected current (top)
and of recorded voltage (bottom)

(a) (b)

sets. Each stimulus is repeated 7–8 times. Further information
on the experimental methods can be found on the competi-
tion’s webpage (see Footnote 1).

2.3 Challenge B: predicting the neuronal response upon
stimulation by ramp and step currents (2007)

Challenge B has the goal to predict the response of neurons
upon stimulation by ramp and step currents. Data were col-
lected in a cortical pyramidal neuron and a cortical bitufted
cell from a young rat’s (postnatal day 13–15) primary soma-
tosensory, non-barrel cortex [data courtesy of the Blue Brain
Project2 and see Wang et al. (2002) for details on the expe-
rimental procedures]. Neurons were injected with various
types of artificial stimuli and voltage was recorded at the
soma in current-clamp mode (Fig. 3).

Several input samples are given as training data toge-
ther with the electrophysiological measurements. Other input
samples are given for test/prediction (without the corres-
ponding measurements). More specifically, the training set
consists of

– Hyperpolarizing and depolarizing subthreshold current
steps (Fig. 3b top left).

– Superthreshold step currents of about 0.1 s duration
(Fig. 3b top right). Cells respond with a few spikes.

– Superthreshold step currents of about 2 s duration (Fig. 3b
bottom left). One cell responds with spike trains that show
adaptation; another cell exhibits initial bursting without
further adaptation.

– Pairs of strongly depolarizing pulses that allow one to
study spike-afterpolarizing potentials, spike triggered
adaptation and refractoriness (Fig. 3b bottom right).

2 http://bluebrain.epfl.ch.

The test set consists of

– Two sequences of different subthreshold steps, one
depolarizing, the other hyperpolarizing.

– Superthreshold step currents of about 0.2 s duration, simi-
lar to the one in the training set, but starting from a depo-
larized background.

– A slow ramp current leading to neuronal firing.

Evaluation criterion. The aim is to predict the subthreshold
voltage trace, the timing of the first spike, as well as the firing
frequency at the beginning and at the end of a two-second
step current. Model quality is measured first separately for
each criterion, and then the overall rating is determined by
appropriate mixing of the individual criteria. Each criterion
is evaluated on a scale between 0 and 1 where 1 is the optimal
solution. In addition to the coincidence factor Γ of challenge
A, we use a generic function

g(x) = 1

1 + x2 (5)

which is bounded between 0 and 1. Equation (5) is used as
follows on the different test sets mentioned above

– Two sequences of different subthreshold steps, one depo-
larizing, the other hyperpolarizing. The aim is to predict
the subthreshold voltage with a precision of 2 mV. We
define the difference between the voltage of the experi-
mental trace and that of the model neuron in data set k
as xk(t) = (udata,k(t) − umodel,k(t))/2 mV and use the
criterion

F1 = 1

2

2∑

k=1

1

T

T∫

0

g(xk(t))dt (6)
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where k runs over the two sequences of subthreshold steps
and T is the duration of the stimulation.

– Several superthreshold step currents of about 0.2 s dura-
tion starting from depolarized background. The aim is to
predict the timing of the first spike with a precision of
10 ms. We define the difference between the timing of
the first spike of the experimental neuron and that of the
model neuron as xfirst = (tfirst

data − tfirst
model)/10 ms and use

the criterion

F2 = 1

n

n∑

k=1

g(xfirst
k ) (7)

The lower index refers to the different data sets (step
currents of different amplitudes).

– The second aim with these superthreshold step currents
is to predict the firing frequency of the neuron at the
beginning and at the end of the stimulation with a pre-
cision of 5 Hz. To do so, we determine the duration of
the first, second, and last interspike interval and trans-
form to units of frequency. For example, the frequency
during the first interval is the inverse of the first interspike
interval f first = 1/[t second − tfirst]. The normalized diffe-
rence between the frequency of the experimental neuron
and that of the model neuron x f 1 = ( f first

data − f first
model)/5

Hz leads to the evaluation measure g(x f 1). Similarly, the
inverse of the duration of the second and last interspike
intervals leads to measures g(x f 2) and g(x f 3). The final
evaluation criterion is

Fi+2 = 1

n

n∑

k=1

g(x f i
k ) (8)

with i = 1, 2, 3. The index k runs over all experimental
traces of step currents in the test set.

– A slow ramp current, leading to neuronal firing. The aim
is to predict the timing of the first spike with a precision
of 10 ms. We define the difference between the timing of
the first spike of the experimental neuron and that of the
model neuron as xfirst = (tfirst

data − tfirst
model)/10 ms and use

the criterion

F6 = g(xfirst) (9)

The overall aim is to maximize criteria F1, . . . , F6 for each of
the two different neurons. Since we have two neurons (regu-
lar spiking with adaptation and delayed spike initiation), we
have a total of 12 criteria. We use the labels F1, . . . , F6 for
the first neuron and F7, . . . , F12 for the second neuron. In the
literature of multi-criteria optimization several possibilities
of combining the different “targets” are discussed. A parti-
cularly severe one is to look only at the worst performance.

An alternative would be to look at the mean performance∑
k Fk/12. We use a compromise between both approaches

and average over all 12 criteria but give more importance to
the worst performing criteria. With this approach, we still
consider all 12 criteria but avoid the situation that a model
ranks high if it does very well on the majority of criteria (say
9 out of 12) but performs really poorly (with Fk ≈ 0) on the
remaining ones. Loosely speaking, we want to give prefe-
rence to models that perform reasonably well across a broad
range of stimuli. Specifically, we use the following two-step
procedure

1. Rank the indices according to performance. The crite-
ria that performs worst gets an upper index (1): C (1) =
mink{Fk}, the second worst an upper index (2): C (2) =
mink{Fk |worst removed}, etc . . .

2. Evaluate the weighted mean

ΓB = 0.5 C (1) + 0.25 C (2) + · · · =
12∑

k=1

1

2k
C (k) (10)

The overall aim is to maximize ΓB .

2.4 Challenge B: predicting the neuronal response upon
stimulation by ramp and step currents (2008)

The challenge B in 2008 uses fewer (three) training stimuli
and only one test stimulus. The number of repetitions was
increased in order to have a better measure of the cell’s intrin-
sic reliability. The training stimuli consisted of depolarizing
steps, hyperpolarizing steps, and a symmetric ramp stimula-
tion (Fig. 4). The test stimulus consisted of a concatenation
of de- and hyperpolarizing steps.

Evaluation criterion. The evaluation is performed on 18 dif-
ferent objectives which have to be satisfied simultaneously by
the same model. The features consist of the following: total
number of spikes, inter-spike intervals (ISI), spike latency
(SL), subthreshold voltage (SV), and inter-spike minimum
(ISM) of the voltage trace. The test stimulus consists of seve-
ral epochs [see Fig. 4]. Some of the features do not apply to
all epochs, and it would be overly complicated to consider all
the possible features of the neuronal response. Therefore, we
focus on the following restricted set of 18 features, namely

– f1: total number of spikes
– f2: first SL in epoch 2
– f3: first ISI in epoch 2
– f4: second ISI in epoch 2
– f5: last ISI in epoch 2
– f6: mean ISM in epoch 2
– f7: SV in the initial segment of epoch 2
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Fig. 4 Challenge B 2008. a Cortical pyramidal neurons were
stimulated by injection of current traces at the soma. Voltage was
recorded with the same electrode. b 3 different training stimuli were
used: a suprathreshold depolarizing step, a hyperpolarizing step, and a

symmetric ramp. c The test stimulus consisted of a concatenation of step
currents of various amplitudes. Ten different epochs of this stimulation
are labeled. The total number of spikes and features from the epochs 2,
3, 8, 9, and 10 are evaluated

– f8: SV in epoch 3
– f9: first SL in epoch 8
– f10: first ISI in epoch 8
– f11: second ISI in epoch 8
– f12: last ISI in epoch 8
– f13: mean ISM in epoch 8
– f14: SV in the initial segment of epoch 8
– f15: first ISI in epoch 9
– f16: last ISI in epoch 9
– f17: first ISI in epoch 10
– f18: last ISI in epoch 10

For each feature, we compute the chi-square deviation in
order to get the set of 18 performance measures. For example,
the first performance measure is

B1 =
√

(Nm − 〈Nn〉)2

V [Nn] (11)

where Nm is the number of spikes predicted by the model, Nn

the number of spikes observed in the real neuron. The angular
brackets stand for the average over all available repetitions,
and V[.] stands for the variance across all available repetitions
of the experimental trace. A slightly different procedure is
used for the features concerned with the subthreshold voltage.
We estimate the mean square difference between the voltage
measured and the voltage modeled, at each time step from
the onset of the current step to a time T. This is weighted by
the average mean squared error across all combinations of the
six repetitions. The extent of the initial segment considered,
T, is chosen to be the first spike latency minus three times its
standard deviation.

2.5 Challenge C: predicting the timing of somatic action
potentials in cortical neurons in response to random
current injection at the soma and a dendritic location
(2007 and 2008)

Challenge C asks for a quantitative neuron model that is able
to predict the response of neurons to random current injection

at the soma and/or its dendrites (Fig. 5). The dataset consists
of simultaneous whole-cell voltage recordings from the soma
and apical dendrite of neocortical layer 5 pyramidal neurons
under random current injection via the somatic and/or den-
dritic recording pipette [data courtesy of Matthew Larkum
and colleagues (Larkum et al. 2004)]. Stimulation is done
with currents of different means and fluctuation amplitudes.

For each combination of somatic and dendritic inputs, only
a single trial is available in the training set. As for challenges
A and B, several stimulation sets are set apart as test sets for
the prediction.

Evaluation criterion The aim is to predict the timing of
somatic action potentials with a precision of ±2 ms. To eva-
luate the quality, we use the same criterion as in challenge
A, i.e., ΓC = Γ [see Equation (1)] The overall aim is to
maximize Γ averaged across all test sets.

2.6 Challenge D: predicting the timing of somatic action
potentials and the evolution of the dendritic membrane
potential in a layer 5 cortical pyramidal neuron
in response to current injection at the soma and up to 2
dendritic locations (2007 and 2008)

Challenge D combines features of challenges B and C and
focuses on voltage traces obtained by triple whole-cell recor-
dings from the soma and two dendritic locations in a neocor-
tical layer 5 pyramidal neuron [data courtesy of Matthew
Larkum and colleagues (Larkum et al. 2004)]. Two different
types of stimulation protocols are used. In the first, current
pulses are injected with different delays at the soma and at
the distal dendritic pipette to capture the nonlinear interac-
tions between backpropagating action potentials and den-
dritic calcium spikes during BAC firing (backpropagating
action potential activated calcium spike firing; Fig. 6) (Lar-
kum et al. 1999; Schaefer et al. 2003). In the second, random
current waveforms are injected at the soma and/or at dendritic
locations, similar to those used in challenge C.
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Fig. 5 Challenge C. a Cortical
pyramidal neurons were
stimulated by injection of
random current waveforms at
the soma and/ or dendrites.
Voltage was recorded at the
somatic and/or dendritic site.
The goal is to predict the timing
of somatic action potentials with
a precision of ±2 ms, as in
challenge A. b Samples of
injected current (top) and of
recorded voltage (bottom) at the
somatic site (subscript ‘s’, black
traces) and at the dendritic site
(subscript ‘d’, dotted red traces)

µ

(a) (b)

Vs(t)

200 µm

L5

L4

L2/3

L1

Vd1(t)

Vd2(t) 5 ms

20 mV

Vd1(t)

Vd2(t)

Vs(t)

(a) (b)

Fig. 6 Challenge D. a Recording configuration used to evoke and
observe backpropagating action potential activated calcium spike firing
[BAC firing; (Larkum et al. 1999)]. At the soma, a square pulse of
current (duration, 5 ms; amplitude, 2.5 nA) is injected in each trial
via the patch pipette (solid black). At the proximal dendritic pipette
(dotted blue) zero current is injected. At the distal dendritic pipette
(dashed red) an EPSC-like current waveform is injected (time course,

f (t) = (1 − exp(−t/τ1)) ∗ exp(−t/τ2) with τ1 = 2 ms and τ2 = 8 ms;
peak amplitude of the resulting waveform, 2.6 nA) whose onset is varied
with respect to the time of the somatic current pulse. The membrane
potential is recorded simultaneously at all three pipettes, as shown in
b for a trial in which the distal dendritic EPSC waveform began 1 ms
after the end of the somatic current pulse

Evaluation criterion The first aim is to predict the trajectory
of the membrane potential at the location of the proximal
dendritic pipette during the BAC firing protocol with a preci-
sion of 2 mV. The voltage at this pipette is recorded faithfully
because it is not used for injecting current during this pro-
tocol. We define the difference between the voltage of the
experimental trace and that of the model neuron in data set k
as xk(t) = (udata,k(t) − umodel,k(t))/2 mV and use the crite-
rion

F1 = 1

n

n∑

k=1

1

T

T∫

0

g(xk(t))dt (12)

where k runs over all n sequences of subthreshold steps and T
is the duration of the stimulation. Similar to challenge B, the
function g is bounded between 0 and 1 and given by g(x) =
1/(1 + x2) in challenge D 2007 and g(x) = 1/(1 + |x |) in
challenge D 2008, respectively. The second aim is to predict

the timing of somatic action potentials in response to both
types of stimulation protocols with a precision of ±2 ms.
To evaluate the quality of the prediction, we use the same
coincidence measure that is used for challenges A and C.
F2 is the value of Γ averaged over all samples in the test
set. Finally, both the subthreshold criterion F1 and the spike
precision criterion F2 will be given equal weight

ΓD = 0.5 F1 + 0.5 F2 (13)

The overall aim is to maximize ΓD .

3 Discussion

In this paper, we briefly introduced the Quantitative Single-
Neuron Modeling Competition as it took place in 2007 and
2008. Given the feedback we had from the first two editions
(see Tables 1 and 2), we plan to make it an annual scientific
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Table 1 Challenge A 2007

Authors Performance Model

Benchmark 0.82 AdEx

Kobayashi and Shinomoto 0.72 ARX

Benchmark 0.69 aSRM

Shinomoto and Kobayashi 0.66 CC

Anonymous 0.55

Anonymous 0.32

Max. performance is 1. AdEx: adaptative exponential Integrate-and-
Fire model; ARX: Autoregressive exogenous model; aSRM; adaptative
Spike Response Model; CC: carbon-copy model [see (Jolivet et al. 2008)
for further details]

Table 2 Challenge A 2008

Authors Performance Model

Shinomoto and Kobayashi 91.4 ± 7.1 ARX

Badel 89.9 ± 6.0 AdEx-1

Mensi 84.4 ± 4.4 aSRM

Mueller 84.2 ± 4.2 AdEx-2

Anonymous 82.1 ± 4.4

Anonymous 73.9 ± 7.3

Benchmark 48.2 ± 2.0 LIF

Guerel-Ponulak 46.9 ± 4.5

Anonymous 37.4 ± 1.4

Anonymous 33.3 ± 2.7

Anonymous 18.4 ± 0.8

Anonymous 13.6 ± 1.4

Max. performance is 100. ARX: Autoregressive exogenous model with
moving threshold; AdEx: exponential Integrate-and-Fire with dynamic
threshold; aSRM: Spike Response Model with moving threshold; LIF:
leaky Integrate-and-Fire model

event during the next couple of years. Of course, the datasets
and evaluation criteria are subject to improvement over the
next years. For example, in the 2008 edition of the challenge
we switched in Challenge A from a random current to a ran-
dom conductance injection which reflects more closely the
situation in vivo. Moreover, for challenge B in 2008 we used a
different set of recordings with multiple repetitions for each
step-stimulus so as to allow to scale the performance of a
neuron model on a given criterion (such as spike timing, fre-
quency, or subthreshold voltage) with the intrinsic reliability
of the experimental neuron for that feature.

3.1 What is a good evaluation criterion?

Designing appropriate evaluation criteria is one of the most
important issues of running a competition. While it is relati-
vely easy to develop an elegant evaluation criterion to com-
pare the timing of spikes (see ΓA for instance), it is very

difficult to develop an evaluation criterion for predicting the
membrane voltage or other features of neuronal dynamics
that might be of importance. A naive approach based on the
squared difference of predicted and measured voltage is not
useful because of the singular character of spike events. An
action potential misplaced by one millisecond would cause a
large error signal. However, the form of the downswing of the
spike and the spike-afterpotential have been used by expe-
rimentalists to distinguish different neuron types, and here
small differences in the voltage matter. Hence we wanted to
include some features characterizing these aspects. Finally,
traditional electrophysiology has characterized neurons by
spike frequency and spike frequency adaptation. The com-
bination of all these aspects led to the set of rather complex
criteria used in challenge B.

An interpretation of the raw values of the different test
criteria might prove difficult: Is 0.98 really much better than
0.90? Assessing the quality of a model on a specific crite-
rion is not possible without comparing it with the intrinsic
reliability of the experimental neuron on this same criterion
Jolivet et al. (2006b) [or a class of neurons as discussed in
Druckmann et al. (2007)]. In 2008, we have therefore used
in challenge B measures that are scaled by the intrinsic relia-
bility, that is, our criteria tell us by how many experimen-
tal standard deviations a model differs from the target. This
approach allows us to compare numbers across different cri-
teria. It should be noted that a scaling by intrinsic reliability
is only possible if a sufficient number of repetitions of each
experimental paradigm is available—and this requires a care-
ful design of the experimental protocol. A lot of work is still
needed to develop and characterize appropriate evaluation
functions that quantify model predictions beyond a simple
average firing rate or coincident spikes.

3.2 What is a good neuron model?

Challenges A and B probe the neuron at a single location
and therefore relate naturally to single-compartment models
(point neuron models), whereas challenges C and D require at
least two compartments. Although many researchers
expressed interest in the challenges, only a small number
of submissions was received. Submissions were especially
scarce for challenges C and D. Challenge A appeals directly
to the large community of researchers interested in single-
compartment models – and because of the simple evaluation
criteria (spike timing) it seems to be amenable to standard
optimization techniques. Surprisingly, challenge B which
takes up electrophysiological paradigms used by numerous
researchers did not incite a large number of submissions, nei-
ther with detailed models of the Hodgkin-Huxley type nor
with simple integrate-and-fire type models. Challenges C-D
represent a more difficult problem whose solution requires
models consisting of more than one compartment. However,
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we predict that significant progress will be made in this area at
the interface between simple phenomenological models and
detailed biophysical models in the near future. In summary,
we believe that a lot can be learned about neuronal compu-
tation by taking up this kind of challenge, and we would like
to encourage the computational neuroscience community to
participate in subsequent competitions in truly sportive spirit.

What follows from the results of challenge A displayed in
Tables 1 and 2 is that standard leaky integrate-and-fire models
or other off-the-shelf methods are not sufficient to account
for the variety of firing patterns and firing rates generated by
a single neuron. The conclusion is that one has to include
some dynamics in the threshold so as to achieve two things:
first, to account in some rough fashion for neuronal refracto-
riness, and, second, to gain some flexibility in matching the
mean firing rates across different stimulation paradigms. We
had already shown that predicting subthreshold membrane
voltage is relatively easy (Jolivet et al. 2006a). Predicting the
exact timing of spikes is where the difficulty resides.

In order to reach a substantial predictive capability over
a broad range of firing rates, some of us and others had
to include dynamics in the threshold mimicking adaptation
and/or refractoriness (Rauch et al. 2003; Jolivet et al. 2006b).
Indeed, all the models that included one such feature perfor-
med well. ARX and aSRM (see Tables 1 and 2) have a cumu-
lative dynamic threshold. Apart from the dynamic threshold,
both models are purely linear. The ARX performed slightly
better than the aSRM since the ARX submission used a dif-
ferent set of parameters for each test set whereas the aSRM
used the same set of parameters across all stimuli. The AdEx
model [adaptive exponential integrate-and-fire model (Brette
and Gerstner 2005)] combines a nonlinear voltage equation
containing linear and exponential terms (Fourcaud-Trocmé
et al. 2003) with a second equation that captures both spike-
triggered adaptation and subthreshold adaptation. Two inde-
pendent submissions used the AdEx models with some slight
modifications. The submission of Badel (AdEx-1) combined
the AdEx dynamics with a moving threshold; the submission
of Mueller (AdEx-2) modified one term in the AdEx equa-
tions from current based to conductance based. All these
models with adaptation and/or dynamic threshold performed
very well. The difference between the ARX and the AdEx-1
was not significant so that both can be considered as winners
of the 2008 competition. On the 2007 data set, the AdEx
model ran out of competition, but performed slightly better
than the ARX model. In contrast to the models mentioned
so far, all those models that did not include features such
as adaptation of dynamic threshold had a significantly lower
performance (most of the anonymous results). In particular,
an off-the-shelf leaky integrate-and-fire model achieved a
performance of 48.2 ± 2 on the 2008 data set, which is seve-
ral standard deviations below the performance of the win-
ning adaptive models which score in the range of 90±7. The

exact optimization strategy does not seem to play a critical
role. A detailed description of the first four models and asso-
ciated optimization strategies presented in Table 1 can be
found in (Jolivet et al. 2008). Winning strategies were very
similar in both challenge years.

Note that the present initiative differs from the recent Neu-
ral Prediction Challenge3 in the sense that the goal is to design
a model that predicts features of neuronal activity in response
to fluctuating current or conductance inputs while the goal
in the Neural Prediction Challenge is to design a model that
predicts the responses of neurons to “natural” sensory stimuli
in vivo.

Further information about the subsequent and future chal-
lenges can be found on the competition’s website (see
Footnote 1).
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